DESASTRE ...¿NATURAL?
El terremoto de grado 9 ocurrido el pasado viernes en Japón fue el principio de una cadena
de desastres.
El tsunami subsecuente –que ocurrió a unos 130 kilómetros de la costa nororiental de Japón–, con olas de
hasta 10 metros, causó una devastación que horrorizó al mundo, al ser transmitida en tiempo real.
de desastres.
El tsunami subsecuente –que ocurrió a unos 130 kilómetros de la costa nororiental de Japón–, con olas de
hasta 10 metros, causó una devastación que horrorizó al mundo, al ser transmitida en tiempo real.
PROPAGACION DE LA ENERGIA DEL SISMO DE JAPON EN EL PACIFICO
Pero faltaba más: terremoto y olas causaron daños graves a varias plantas nucleares en Japón. En una de ellas (Fukushima) se produjo una explosión que liberó gases radiactivos a la atmósfera. Y el riesgo de una liberación masiva de material nuclear era alto.
Pero faltaba más: terremoto y olas causaron daños graves a varias plantas nucleares en Japón. En una de ellas (Fukushima) se produjo una explosión que liberó gases radiactivos a la atmósfera. Y el riesgo de una liberación masiva de material nuclear era alto.
Por supuesto, un terremoto es un fenómeno natural, imprevisible e inevitable. Pero para que éste se convierta en catástrofe humana tiene que haber falta de previsión.
La prevención de desastres consiste, precisamente, en tomar medidas razonables, basadas en la probabilidad de que se presenten fenómenos naturales dañinos, para minimizar los estragos que éstos puedan causar a la sociedad humana.
EL REACTOR DE FUKUSHIMA MOSTRANDO EL NUCLEO Y LAS DOS CUBIERTAS DE HORMIGON QUE LO PROTEGEN
Un reactor nuclear consta de barras de combustible radiactivo –uranio o plutonio– que sufren una
reacción controlada de fisión a altísima temperatura, que hace hervir agua, la cual se aprovecha para generar electricidad. Ante el terremoto, un sistema automático paró por completo la reacción nuclear –introduciendo totalmente las barras controladoras de cadmio u otro material que absorben los neutrones y detienen la reacción en cadena. Pero el núcleo radioactivo del reactor sigue
caliente, y necesita un bombeo constante de agua durante días para enfriarse totalmente.
reacción controlada de fisión a altísima temperatura, que hace hervir agua, la cual se aprovecha para generar electricidad. Ante el terremoto, un sistema automático paró por completo la reacción nuclear –introduciendo totalmente las barras controladoras de cadmio u otro material que absorben los neutrones y detienen la reacción en cadena. Pero el núcleo radioactivo del reactor sigue
caliente, y necesita un bombeo constante de agua durante días para enfriarse totalmente.
En Fukushima el temblor, combinado con el tsunami, cortó la energía eléctrica que alimenta las bombas de agua, y dañó además las plantas de emergencia. Los reactores quedaron entonces en riesgo de sobrecalentarse y fundirse con lo que el material radiactivo podría atravesar la pared de acero del reactor y la doble cubierta de hormigón que lo protege, quedando expuesto y generando una contaminación desastrosa, como ocurrió en Chernobyl en 1986.
Los técnicos japoneses lograron bombear agua de mar para enfriar los núcleos, aun cuando esto dejó inservibles los reactores. Pero sí hubo escape de radiación, debido a la explosión de gas hidrógeno acumulado por la corrosión acelerada que sufrió uno de los reactores. Por ello, las autoridades de salud japonesas toman ya medidas para reducir los daños por radiación en la población.
REACTORES DE JAPON
Una segunda explosión sacudió a la planta nuclear japonesa dañada por un terremoto, donde las autoridades trabajan de forma desesperada para evitar la fusión del núcleo de los reactores.
El terremoto más grande en los registros de Japón desactivó la refrigeración de apoyo de varios reactores afectados en una planta nuclear en la prefectura de Fukushima al norte de Tokio, lo que causó una acumulación de calor y presión.
El núcleo de un reactor consiste en una serie de tubos o varillas metálicas de circonio que contienen pellets de combustible de uranio almacenado en los que ingenieros llaman equipos de combustible.
Se bombea agua entre las varillas para mantenerlas frescas y para crear el vapor que impulsa una turbina generadora de electricidad.
La refrigeración de apoyo tuvo problemas varias veces durante los últimos tres días en los reactores 1, 2 y 3 en la planta de Fukushima.
En el funcionamiento normal de un reactor, neutrones de energía alta del combustible de uranio golpean átomos y los rompen, en una reacción en cadena que genera calor, nuevos elementos radiactivos como estroncio y cesio, y nuevos neutrones que continúan el proceso.
La reacción en cadena se detuvo a pocos segundos del terremoto en todos los reactores nucleares en Japón, inclusive los más afectados, ya que se apagan automáticamente: barras de control hechas de boro se insertaron en el combustible, que absorbieron los neutrones.
Sin embargo la degradación natural de los materiales radiactivos en el núcleo del reactor continúa produciendo calor, llamado calor residual, que cae a un cuarto de su nivel original durante la primer hora, y luego desaparece más lentamente.
Normalmente ese calor es eliminado por bombas de refrigeración que en la planta de Fukushima perdieron el suministro de energía de emergencia a causa del terremoto, el tsunami o ambos.
Trabajadores de emergencia intentan refrigerar los núcleos del interior de los reactores y remover el calor residual con el bombeo de agua de mar al interior de estos. Agregaron ácido bórico al agua de mar para intentar detener las reacciones nucleares aun más, como medida adicional de precaución.
La refrigeración de los reactores es importante porque aunque se hayan detenido las reacciones en cadena, aun queda suficiente calor para fundir las varillas metálicas que rodean el combustible de uranio. Si estas se calientan lo suficiente, reaccionan químicamente con el agua que las rodea, lo que produce un gas de hidrógeno explosivo.
Fue ese gas de hidrógeno lo que causó las dos explosiones en la planta de Fukushima, en la unidad 1 el sábado y en el reactor 3 el lunes, según expertos y funcionarios.
Ingenieros intentaron ventilar el hidrógeno hacia la atmósfera, lo que también contribuyó a cierto grado de radiación local porque el gas contenía pequeñas cantidades de partículas radiactivas.
El núcleo del reactor está dentro de un espeso contenedor de acero, rodeado por una estructura de contención de hormigón. Alrededor del conjunto hay un edificio más abierto con una cobertura bastante delgada a la que no se le da una función estructural importante.
Las explosiones de hidrógeno sólo dañaron al edificio externo, que colapsó, no a las estructuras internas, según las autoridades.
Si se rompiera una cúpula de acero en el interior de un reactor, subirían los niveles de radiación. Pero a esta altura ya no hay suficiente calor como para destruirlas, dicen expertos.
Aun queda el riesgo de que se funda el núcleo, que es lo que ocurrió en Three Mile Island en Pennsylvania en 1979. En ese caso, el sitio sería sellado en forma permanente.
Chernobyl en 1986 fue una situación diferente donde las barras de control no lograron controlar la reacción de fisión en cadena, y esto llevó a explosiones que destruyeron el reactor, lo que derramó radiación que contaminó a Ucrania y Europa en el peor desastre civil en la historia mundial.
ACCIDENTE DE CHERNOBIL
La Central Nuclear de Chernóbil era administrada, en 1986, por el gobierno de la Unión de Repúblicas Socialistas Soviéticas (U.R.S.S.). En medio de una prueba en la cual se simulaba un corte eléctrico, el reactor 4 de la Central aumentó de forma imprevista su potencia, lo que produjo un sobrecalentamiento de su núcleo que hizo explotar el hidrógeno acumulado en su interior.